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(2) The crystals form as needles parallel to the 
c axis, which is the direction of the Pb-N spirals. 

(3) The needles form as thin plates perpendicular 
to the b axis, consistent with the weak bonding 
between the sheets of sph'als. 

(4) The needles are easily deformed and show plastic 
behaviour. This arises from flexibility of the spirals 
and many crystals were observed in which the direc- 
tion of the c axis was not constant. In one case a 
Weissenberg photograph for oscillation about the 
a axis showed that the c axis direction varied con- 
tinuously over a range of about I0 ° within the length 
of the crystal (about 200/z). 

(5) Optical absorption is greatest for the direction 
of the a axis which is the direction towards which 
all the N-C-N groups are aligned. 

(6) Thermal decomposition results in the evolution 
of cyanogen, but the powder pattern of the material 
is not appreciably altered. This corresponds to bond 
fission between the Pb and I~(2) atoms and between 
the N(1) and C atoms so that C-N(2) units from 
adjacent groups form cyanogen and the -Pb-N- 
spirals remain unchanged. The Pb-N(2) and the 
N(1)-C bonds are the weakest in the structure. 

I am most  grateful  to Dr 1VI. J .  Sole for valuable  
discussions about  the correlation between the struc- 
ture and  physical  properties. I am also grateful to 
Miss K. M. Adams for assistance with crystal  selection 

and sett ing and for the de te rmina t ion  of the  accurate  
la t t ice  parameters.  

I t  is a pleasure to t h a n k  Prof. Sir Nevil l  Mort, 
F.R.S. and Dr W. H. Taylor  for provision of facilit ies 
and for thei r  interest  and  encouragement .  I am also 
indebted  to Dr M. V. Wilkes and  Mr E. N. Mutch 
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The displacements of lattice points around a Cu atom in perfectly disordered AuCu 3 are derived by 
means of a Fourier transformation of diffuse scattering amplitude, without making any assump- 
tions as to the nature of the distortion field. 

The results show that  the displacement d m n  of lattice point n at  the position rmn with respect 
to the distortion centre m is expressed by 

dmn ---- cA ( r m n / ] r m n [  a) --  K 

where cA is a constant and K is an additive term which may be identified with the image term as 
discussed by Eshelby (J. Appl. Phys. (1954) 25, 255). 

The possibility of deriving the Zernike parameter of the order-disorder phenomena, when they 
are accompanied by size effect lattice distortmns, is suggested. 

The present  au thor  has suggested (Doi, 1960b, 1961) 
t h a t  with a Fourier  t ransformat ion  of diffuse scattering 
amplitude dis t r ibut ion the order-disorder  phenomena 

* On leave of absence from Japan Atomic Energy Research 
Institute, Tokai-mura, Japan. 

of b inary  alloys can be discussed from a new poin t  
of view, i.e. t h a t  of the  propagat ion of order (Zernike, 
1940), which may  open a way accessible to the  'exact  
solution'  in the  sense of 0nsager  (1944) as pointed 
out  by Asbkin & Lamb (1943). 
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In  order to at tain this object, however, the so-called 
size effect modulation must be estimated and, if 
possible, eliminated so tha t  the diffuse scattering 
subject to the Fourier t reatment  be regarded as 
purely due to the substitutional disorders. In this 
paper a possible approach to this problem will be 
described. 

Moreover information on the lattice deformation 
around a point imperfection in an f.e.c, alloy crystal 
will be obtained in a less arbi trary way than tha t  
previously adopted. 

T h e o r y  

Boric has given an expression of the diffuse scattering 
for perfectly disordered f.c.c, alloys assuming that  
the size effect displacements are small quantities 
(equation (7) of Boric, 1959): 

ID 
mAmB~¥ 

mBf~. i 2; s.Sm~ exp (isrm~) (1) (fA--fB) mB n.m 

with 
8m~=eA(rm./lr=nl3), CAmA=--cBm.. (la) 

Here the position of the lattice point n is given by 
a vector rmn+~mn starting from the origin m, 8mn 
being the displacement of the lattice point n caused 
by the presence of a particular kind of atom, say A, 
at  the origin m. fA, f8 and mA, mB mean the form 
factors and concentrations of A and B atoms, and 
CA, eB measure the strength of the distortion center m 
when it is occupied by an atom A or B respectively. 
s is a reciprocal space vector and _TV stands for the 
total  number of atoms. 

I t  is recognized tha t  the quant i ty  in the bracket 
of (1) is real if 

~ , =  - 8 ~ , _ ,  (lb) 

and we can define the amplitude of diffuse scattering 
such tha t  

A(s) = 

(fA--fB) + i 2 ;  S. ~ exp (is.  rm~) 
mB n~-m 

x e x p  { i~(s)}  (2) 

where w(s) means the phase angle at  the position s. 
When we take the origin of the direct space at the 
distortion centre m, then 

exp { i ~ ( s ) } =  _+ 1 

and the right-hand side of (2) can be rewritten, 
assuming Bran's as small quantities, 

# / *  
_ 

A(s) = _+ ]~-~ /  

+ f B L ~  exp (is'(rmn+Smn)}-- ~meXp (iS'rmn}] l 

(2a) 

with 
f =mAfa +mBfB . (25) 

Equation (2a) means tha t  tuBA(S) is the diffuse 
scattering amplitude produced by atoms of form 
factor f placed at  rmn+Smn (mdn), and an atom A 
at the origin m. Taking the Fourier transform of 
m.[; A(s)-(fA-f.)]/f we have" 

I mB[T- exp {is.r}dvs A(S)_---(fA--fB)] 

f 
= 2 ;  [ O ( B m , + r m , - r ) - 6 ( r m , - r ) ]  (3) 

n-~m 

where O(r) means the delta function in direct space. 
I t  is seen from (3) tha t  if we can have the values of 
A(s) with their signs in the whole of the reciprocal 
space, we can derive the values of ~mn for every n 
without any assumptions like (la), which is, however, 
not feasible in practice. 

In  this respect the author has developed (Doi, 1957, 
1960a) a method which consists of a Fourier trans- 
formation of amplitude distribution in a limited region 
of a reciprocal space, in particular, in the neighbour- 
hood of a relpoint where phase angles are easily 
assigned (Doi, 1957) assuming the statistical centro- 
symmetry" 

- - L 1 L 2 L 3  L1L2La 
e(r) = ¢ ( - r )  (4) 

.LIL2L3 
In equation (4), ~(r) means the electron density 
averaged over the points 

(rl + nlLlao, rg. + n2Lgao, r8 + n3L3ao ; 
nl, n2, n3=O, +1,  ___2,_+3, etc . . . .  ), 

where a0 means the period of the f.c.c, lattice. In  
the present case the statistical centrosymmetry is 
implied by the condition (lb) and the phases are 
limited either + 1 or - 1. Let 

K(s)=K(sl,  s2, s3) 
= sin ½(ao/2)sl sin ½(ao/2)s2 sin ½(ao/2)s8 (5) 

~1/2 s2/2 ~/2 
and define a function: 

~(2oo)(r) = I 
m B [ ~  A(s)--(fA--f~)] 

f 
×K(s-s(2oo)) exp {ir.(s-s(2oo))}dvs (6) 

where s(2oo) means the relpoint (200). I t  is shown using 
the convolution theorem (Doi, 1957, 1960a, b) that  

= I ~ ~(rmn+Smn--r)--  ~(rmn--r) ~0(200)(r) 
J n@m 

× A ( r ' - r )  exp [-is(2oo).r']dvr, (7) 
with 

A (r) = f K(s) exp [is. r] dvs 
t /  

1. for lrll < ka0, Irzl < ¼a0, Irst < ¼a0, 

= 0 otherwise. (8) 
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From (7) and (8) we have: 

~v(2o0)(ru~) = exp {i[s(eoo). du~]}- 1 

___ - i sin [s(200). 8u~] (9) 

where Sue is the displacement of the face centered 
lattice point" ru~(iao/2, jao/2, kao/2). As the left-hand 
side of (9) can be determined from the experimental 
data only in the neighbourhood of (200) (Doi, 1957), 
we can derive the component of 8o'e in the direction 
of sce00) without any recourse to a hypothesis such as 
(la). The only assumption to be made, in addition 
to the smallness of 8u£s, is the condition (lb) or the 
statistical centrosymmetry (4). 

Example 
For the sake of simplicity let us consider a zero-level 
section of reciprocal space perpendicular to [001]" 

A(su ) = + f A - f +  / 
mB mB 

{ I x ~,Y exp (i[s,. ( ru+Su) ] ) -~ , "  exp (is u. ru) i, (10) 
i,j i,] 

where two-dimensional vectors s u and r,~ represent 
the projections of s and ru~ onto the (001) plane 
respectively, and 

8~j = __~ [Sij~],, (I I) 
k 

with [Su~]u as the projection of 8u~ onto the (001) 
plane. Here also we assume that 8~j~'s are small 
quaptities. We define a two-dimensional analogue of 
(p(200)(r) (equation (6)) constructed from A(%,) of (10): 

f mB[ -T- A(S,,)--(fA--fB)] ~(2oo)(r,) K ( s , , -  S ( ~ o 0 ) )  

xexp  {i[r,.(su-sc2oo)]}dvsu , (12) 

which proves to be 

- i  sin [[S(2oo)l. JSuJcos ocu] (12a) 

where r u means the component of r parallel to the 
(001) plane, and cq~ is the angle between s(eoo) and 8u. 
Throughout the following calculation fA, f s  and f 
are supposed to have the same dependencies upon s. 

The observed values of ID(S,)/Nf ) for disordered 
AuCu3 in the neighbomhood of (200) were given by 
Boric (1957). The sampling of these values were made 
with a mesh of 1/28ao x 1/28a0. 

The phase angles at the sampling points, being 
limited either to 0 or ~ according to the condition (lb) 
(Doi, 1957), were assigned in accordance with Borie's 
calculation (1959), i.e. the value ~r was given for the 
low-angle side of (200) and 0 for the high-angle side, 
there being a nodal line crossing [100] at the (200) 
relpoint. This implies tha t  the atom A at the origin 
is a Cu atom. 

A constant corresponding to ( fA- - f s ) / f  in (12) was 

added to I/(ID/Nf~) so tha t  the function subject to 
the Fourier transformation become antisymmetric 
with respect to the (200) relpoint (equation (2)). 
Though we have no reliable values of ID in the close 
neighbourhood of the relpoint (200), because of the 
confusion with the normal Bragg reflexion, the 
interpolation was made rather easily in view of the 
ant isymmetry  of the integrand of (12) with respect 
to the relpoint (200). The diffuse scatterings in the 
neighbourhoods of the other relpoints (000), (400), 
(220) , . . .  etc . . . .  could be neglected because the 
kernel K(su-s(~o0)) in (12) has no appreciable values 
in the neighbourhoods of those relpoints. 

The function ~(eo0)(rH) was thus calculated which 
proved imaginary in accordance with (12a). The 
scalar product Js(200)l. 18uJ cos c~u, being derived there- 
from for each lattice point (ij), will give the dis- 
placement vector 8u when the vector is supposed 
collinear with the distortion centre (00). The results are 
shown in Fig. 1. Values of ]5~jJ's on the [010] axis 
could not be determined, as the scalar products ale 
identically zero (a0j -- 1~). 

[.010] ~ijx 10 4 (A) 

12 

l 39 47 i 31 23 11 

l / , '  " " 
J 

60 65 50 28 !6 
/ / - 

47 60 55 31 1 

47 60 39 7 
_ _ [1001 

oo 
2 

Fig. 1. The d isp lacement  of the  la t t ice  site (iao/2,jao/2) of 
disordered AuCu a pro jec ted  onto  the  (001) p lane:  

8ij" = 27 [Su~]u 
k 

expressed in the  uni t  of l0 -4 A. The origin (0, 0) is occupied 
b y  a Cu a tom.  The arrows indicate  the  directions and  
magni tudes  of 8@'s (the la t ter  being exaggerated) .  

Other pairs of ]Su}'s and lSzl's, which must be equal 
in accordance with the f.e.c, lattice symmetry,  were 
determined independently. The discrepancies between 
them may thus measure the errors in 18ul's other 
than those due to the series-termination effects. 
All 8u's are found directed toward the distortion 
centre giving rise to a lattice contraction around the 
atom A (=  Cu). 

Discussion 

I t  is seen that  the results represented in Fig. 1 are 
obtained without any assumptions as to the nature 
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of the distortion field. What we have assumed is 
that  8~¢'s are small, collinear with the distortion centre 
(00) and symmetric with respect to the centre (00) 
(equation (lb)). I t  may thus be interesting to compare 
the values of Fig. 1 with those expected after the 
inverse-square law (la), in order to see to what 
extent the elastic continuum model can explain the 
real distortion field. 

Substituting (la) into (11), we have 

4CA r 
lii 'JJ = a--~ E (r 2+4n2) a/2, r =  I,/(i2+j2), (13) 

which is approximated, when r is large, as 

4 C A S ~ r  4CA1 (13a) 
- ~0 (~+4~)~I~  d~ = ~-~0 "7" 

In Fig. 2 15ijl's are plotted as a function of 2/aor, 
for [110], [100] and [210] directions. We see that  
the values of 6~j's for larger values of r are found on 
the straight lines, as expected after equation (13a), 
while those for smaller values of r deviate therefrom 
very appreciably. We cannot conclude, however, 
whether these deviations are real ones or simply due 
to the series-termination errors and/or the approxima- 
tions adopted in effecting the summation of (13). 
I t  is worth noting that  the constant CA determined 
from the slopes of the straight lines in Fig. 2 is 
cA =-0 .07_+0.005  A 3 for the three independent 
crystallographic directions, while the value determined 
by Boric (1957) was ca=-0 .072  ~3. 

(h) 

i~l 

0'0050 

0'0025 

. . . . . .  [11 O] 

. . . . .  boo] 

. . . . .  [21 o],[120] 

o o.~5 o . b  o.~,5 (h-b 
2 

ooJ" 

Fig. 2. The values of l~ijl's plotted against 2/ao/(iu+j~), 
the reciprocal of the distance from the distortion centre, 
along the various directions. 

The fact that  contradicts the assumption (la) is 
that  the straight lines do not pass through the origin 
of Fig. 2. We can take account of these facts by 
making a slight modification in (la), so that  

8ran = cA(rm~/Ir~13)-- K . (14) 

One cannot know with the present results whether 
the modulus of additive term K is a constant or it 
depends on the orientation [hkl]. It  is expected that  
the term may possibly be identified with the image 
term as discussed by Eshelby (1954). 

Concluding r e m a r k s  

It  is to be noted that  the method of analysis here 
developed is not necessarily restricted to the perfectly 
disordered structure but applies to the partially 
ordered states as well, where we have diffuse scat- 
terings in the neighbourhoods of the superlattice 
points, and the function ~(200)(r) becomes in general 
complex. 

We need then only to replace (7) by 

~(200)(r) = f .~, [(fn/f).O(rmn+hmn-r)-6(rmn-r)] 
n # m  

× A ( r ' - r )  exp {i-[s~2oo).r'J}dvr,, (15) 

and the real and imaginary parts of ~(200)(r) will 
enable us to determine independently both fn and 
~mn, where .fn means the form factor of the atom 
occupying the lattice site rmn. It  is seen that  fn's 
are related to the Zernike parameters specifying the 
state of order in the structure (Doi, 1961). This means 
that  the substitutional disorder can be discussed in 
quite an independent way from the lattice distortions 
which accompany it inevitably. I t  also means that  
an approach to the 'exact solution' of the problem, 
i.e. to derive the partition function from the diffraction 
data by the intermediate of the Zernike parameter 
(Ashkin & Lamb, 1943) may be possible even if the 
appreciable size effects are present in the diffraction 
data. 

The author wishes to thank Prof. A. Guinier for 
valuable remarks and discussions. 
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